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The problem of the movement  of liquid in a thin film under the effect of fo rces  of capi l lary  
p r e s s u r e  when one or  both film surfaces  are  re ta rded  is analyzed by the i teration method. 
The resul ts  obtained allow one to t r ace  the evolution of the film, i.e., to construct  its 
profi les  at different t imes  and to find the law of its thinning. A compar ison is made with 
experimental  data. 

The draining of liquid f rom thin f i lms separat ing different phases determines  in considerable mea-  
sure the kinetics of the p rocesses  of coalescence or  coagulation of emulsions and the stabili ty of foams and 
colloids and is of interest  in a number  of technological applications (flotation, heterogeneous boiling, the 
movement  of g a s - l i q u i d  mixtures}, which has caused intensive experimental  study of the kinetics of the 
thinning and separat ion of f i lms [1]. However, in numerous theore t ica l  works it has been possible to con- 
s t ruct  only ve ry  rough models of the thinning based on a considerable  idealization of the draining process .  
The la t ter  is connected with the variety of physical  factors  which affect this p rocess  (capillary forces ,  
molecular  interaction of the film surfaces ,  mass  t rans fe r  of sur face-ac t ive  substances,  etc.}, for  which a 
comparat ive analysis  was presented in [2-4], and with the complexity of the mathematical  problems which 
a r i se .  

The modelling of a rea l  film by plane-para l le l  liquid layers  with free or  re ta rded  surfaces  in the 
presence  of both capi l lary and molecular  forces  has become the most  widespread.  The effect of the diffu- 
sion of sur face-ac t ive  substances on the velocity of the liquid near  part ial ly re ta rded  surfaces  has also been 
analyzed within the f ramework  of this model [5, 6]. It is c lear  that such a model is internally inconsistent,  
since the capi l lary p ressu re  gradient,  which is the main cause of the draining of liquid f rom the film, should 
be ent irely absent in a p lane-para l le l  layer .  A more  real is t ic  model of a fi lm of nonuniform thickness,  
based on a simplified formulation of the mathematical  problem, was analyzed by Frankel  and Mysels  [7], 
who took into account only the capi l lary forces .  

Finally, a se l f - s imi la r  mode of drainage was studied in [4] with neglect of the molecular  fo rces  and 
the diffusion of sur face-ac t ive  substances.  A generalization of the resul ts  of [4] to the situation where the 
surface diffusion of an undissolved substance plays the main role and the van der Waals forces  of a t t r ac -  
tion of the opposite surfaces  of the film are  important  is contained in [8]. An analysis  shows that the self -  
s imi la r  modes of [4, 8] can be rea l ized in the case where the total p re s su re  drop between the center  and 
the per iphery of the film var ies  in a special  way. In the more  general  case the nonlinear equations for  the 
film thickness have been studied only by numer ica l  methods (see [9], for  example}. 

1. Let us consider  the evolution of the film between a drop (bubble} and a flat solid wall. We shall 
consider  the film as axially symmet r i c  and introduce a cyl indrical  coordinate sys tem with its center  at the 
point of intersect ion of the axis of symmet ry  with the wall. In accordance with experimental  data we as -  
sume that the thickness h(t, r) of the film var ies  significantly only over distances considerably  exceeding 
h(t, r} and is not too small  (not less than ~ 1000 i},  so that one can neglect the effect of molecular  fo rces  
on the drainage p rocess .  Since the boundary of  the film with the wall is always re ta rded  we will consider  
only the l imiting cases  when its boundary with the drop is ei ther  completely r e t a rded  or  is f ree .  Then 

there  is no need to study the t r ans fe r  of sur face-ac t ive  substances in the sys tem.  
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Equations describing the variation in the thickness of the film and the flow of liquid in it were ob- 
tained in [4] in the approximation of a thin liquid layer:  

'0 [ ' t  8 [ 8h\3 0p 3n2~tO 

Oh I o 
0-7 = 7 or (rQ), 

where g is the viscosi ty  of the liquid in the film; (r is the surface tension at the boundary with the drop; 
Q(t, r) is the radial  flow of liquid in a calculation per  unit length of a c i rc le  of radius r; p is the p ressure ;  
n = l ,  2 is the number of re tarded sur faces  of the fi lm. We note that the flow in the film is assumed to be 
slow and quasis ta t ionary and the shear  s t r e ss  at the boundary with the drop is equal to zero .  The lat ter  
assumption can be violated in a number  of cases  and it is n e c e s s a r y  to allow for the circulat ion of liquid 
within the drop induced by the movement in the film [10]. It is easy  to eliminate Q(t, r) f rom (1.1) and ob- 
tain a nonlinear equation in four th -order  partial derivatives for  the thickness h(t, r). 

The solution of this equation at present can only be obtained numerical ly ,  with its form essent ia l ly  
depending on the initial profile h(0, r) of the film, which is not known in advance. Therefore ,  it is advisable 
to consider  only an approximate solution of the problem, which would have the required degree of uni- 
versal i ty .  

For  this purpose let us introduce the following iteration procedure for  the construct ion of the solution. 
Suppose the i - th  i teration h(i)(t, r) for the thickness of the film is known. The corresponding values of the 
flow and the p re s su re  can be calculated f rom (1.1) with the condition that the flow is reduced to zero  at 
r=O: 

Q ( ~  ~ i ~  oh(O[ d~; (1.2) 
0 
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s p(~) (t, r) = --  3n=[~ j h(i)3lr= r d~ 
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(the p re s su re  is reckoned from its value at r =0). The next (i + l ) - th  i teration h(i+l)(t, r) is then calculated 
f rom the equation 

h(4+t)3 0 r t O [ Oh(i+l)~] __ 3n2~t,O(~) 

which follows f rom (1.1), in the right side of which the i- th i teration of the flow from (1.2) f igures.  

Obviously, the conditions of symmet ry  relative to the axis r = 0 lead to the requirements  that 

Oh(i+t) oahCi+t) 
0--'7-- = Or--- T -  = 0, r = 0.  ( 1 . 4 )  

In addition, the width of the film (the value r = a ,  which determines  its outer boundary) and the p re s -  
sure  drop 

a~ 
f Op(i+l) dr 2r �9 ~ = A P = - - a  ( 1 . 5 )  

0 

must be taken as known (given) values, since they are  both determined by the geometry  of the sys tem and 
the condition of balance of the forces  acting on the drop and hardly depend on the p rocesses  in the film. In 
the general  case a .  and a, which represent  the average radius of curvature  of the drop near  the wall, de- 
pend on the t ime.  Here for simplici ty we will take them as constant, which cor responds  to a drop which is 
in equilibrium [4]. 

As the zeroth  i terat ion let us examine the function h(~ r) =H(t}, where H(t) is the thickness of the 
film at its center  (r = 0). F rom (1.2) we have 

Q I dH 1 dH 8o (1.6) 
(o) ( t ,  r )  = 2 ~ r ;  H ,  (0 dt = - -  3,~2t,~a ~" 
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If one is limited to only this very  rough i terat ion then the second equation in (1.6), which coincides 
with the well-known equation of Scheludko's model [1], can be cons idered  as the equation determining the 
law of thinning of the f i lm. For  the f i r s t  i terat ion we obtain f rom (1.3) and (1.6) 

h~ o r i a I ah\] 3n~tt '1 dH (1.7) 

[the index (1) is omitted for simplicity].  It is convenient to introduce the dimensionless  variables  s and p 
through the equations 

h (4  r)  = H (t) s (t,  p); r = R,o; R = H \ : ~ A ]  ' (1 .8 )  

F r o m  (1.4), (1.7), and (1.8) we obtain the problem 

d [ 1 0 [ Oskl p ds 8~s 
= o; W ,  = s (p = o). ( L g )  

Here ~ is some unknown parameter ,  which can be determined in principle using (1.5). Assuming in 
accordance  with experimental  data that e is much smal le r  than the limiting curva ture  s = s(t, p) of the sur-  
face as p - - ~ ,  taking the upper limit of integration in the condition (1.5) to infinity, and allowing for  (1.1) 
and (1.8), we obtain from (1.5) the following condition for the determination of e :  

) (0 H ~ ~ A = E ( e ) '  p_~= (1.10) 

The dimensionless  width p = p ,  of the film must  be determined f rom the condition that the p re s su re  
(or curvature) gradient is maximal  at p = p ,  [11]. Using Eq. (1.9), for p ,  we have the equation 

I ( .3~ #~) =0; p, ~* 
,~(p,) '1-- -7-. -~.0=~, = - F "  (1.11) 

Characteristic film profiles s(p; ~) corresponding to different c are shown in Fig. 1 (the calculations 

were made for -7~ -<I0). For a- > 0 the function s(p; c) has a minimum at p =0 and increases mono- 
tonically with p, the faster, the larger ~. When ~< 0 the s(p; 8) curves have a minimum at p =pro(8), 
which usually lies very close to the outer film boundary p =p ,(8). Films of just this shape are most often 
observed experimentally [9, 12]. 

The dependences of the dimensionless curvature K(~) from (i.I0) and the values p, and Pm on ~ are 
presented in Fig. 2. The function K(~) has a minimum at ~ =0.2, while p ,(a) and Pm(~) have maxima at 

8 =--0.5. 

The depeRdences of the value K(~)--K(p; 8),  where K(O; ~) is the dimensionless  curvature  of the 
surface s(p; ~) in the region of p< ~, on p for  different 8 are  plotted in Fig.  3. Actually, this value r e p r e -  
sents the excess capi l lary  p re s su re  in the film, to which it is proport ional .  For  negative 8 the curves of 
Fig. 3 differ considerably from the parabolic p re s su re  distribution which is rea l ized in a plane-paral le l  
liquid layer  (dashed line in Fig. 3) and which follows, for example, f rom (1.6), and are  very close to the 
p re s su re  profi les observed experimental ly [11]. With an increase  in 8 the p res su re  profile in the film ap- 
proaches  ever  c loser  to the parabolic profile. Note that the curves  in Fig. 3 corresponding to different 
in tersect  at values of p close to the corresponding p ,  (e), which is also observed experimental ly [11]. 
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The next  i t e ra t ion  f o r  the f i lm th i ckness  h(t, r) could  a l so  be examined  in p r inc ip le .  However ,  a c o m -  
p a r i s o n  of  the  r e su l t s  which follow f r o m  the  ana lys i s  of  the f i r s t  i t e r a t ion  with the expe r imen t a l  data  (see  
below) shows that  these  r e su l t s  a r e  a c c u r a t e  enough not only in a qua l i ta t ive  but a l so  in a quant i ta t ive  r e -  
spec t .  We should e m p h a s i z e  that  E q .  (1.7) can  be c o n s i d e r e d  as the  s a m e  as that  obta ined  f r o m  (1.11) under  
the s impl i fy ing  a s sumpt ion  that  Q(t, r) =A(t ) r .  Such an a s sumpt ion  was  ac tua l ly  made  in [7], but the equa-  
t ion  fo.r h(t, r) was  wr i t t en  in an i n c o r r e c t  f o r m .  

2. The r e su l t s  of  Sec.  1 al low one to cons t ruc t  f i lm p ro f i l e s  c o r r e s p o n d i n g  to d i f ferent  ~,  but the  
connec t ion  between ~, which in gene ra l  r e p r e s e n t s  a funct ion of  t ime ,  and the th ickness  H(t) of  the c e n t r a l  
pa r t  of the  f i lm r e m a i n s  unknown. F o r  its de t e rmina t i on  we use an e x p r e s s i o n  for  the d imens iona l  f i lm 
rad ius  a .  and the  d imens iona l  c u r v a t u r e  2 / a  f r o m  (1.5) 

a , = R p . ( s ) ;  2a - I=HR-UK(Q,  (2.1) 

whe re  the values  of R, K, and p .  a r e  de te rmined ,  r e spec t i ve ly ,  in (1.8), (1.10), and (1.11). 

Let  us in t roduce  the d imens ion l e s s  f i lm th ickness  ~? at the c e n t e r  and the  d i m e n s i o n l e s s  t ime  T 
th rough  the equat ions  

~ l = H / •  ~=• •  . 

F r o m  (2.1) and (2.2) we have the equat ions  

d~] ~ dTI 4 2 
d~ - P~ (~) ~ ;  - -  7 = ~ " 

(2.2) 

(2.3) 

Using the r e su l t s  p r e s e n t e d  in Fig .  2 to e l imina te  e ,  we obtain the dependence  

- -  d~l/dT=](~l), (2.4) 

which is  i l l u s t r a t ed  in F ig .  4. This  dependence  m a k e s  it poss ib le  to ca lcu la te  ~ =~? (~) for  an a r b i t r a r y  in i -  
t i a l  condit ion,  where  the  c o r r e s p o n d i n g  funct ion e =e  (~) is d e t e r m i n e d  f r o m  the  equat ion 

~]~ (T) = 4p:- 4 (e)K-- 2 (e), (2.5) 

which fo l lows f r o m  (2.3). This  funct ion and the value ~ =~ (T) obtained by n u m e r i c a l  i n t eg ra t ion  of  Eq.  (2.4) 
a r e  shown in F ig .  5. The condit ion ~ (0) =1 is used  as  the  ini t ia l  condit ion,  a l though the  c u r v e  ~? (v) in Fig .  
5 in the  reg ion  of T --~0 > 0 e a n b e  c o n s i d e r e d  to be jus t  l ike t h a t c o r r e s p o n d i n g  to any ini t ial  condit ion 

~(r0) < ~ (0) when ~ =~0. 

2 2 0  



Thus, the behavior of a thinning film is universal  in the sense that the law of thinning is descr ibed by 
a single curve ~ (~), the function e(~) is uniquely determined by the function ~ ('r) (the dependence of ~ on 
~? is i l lustrated by the corresponding curve in Fig.  4), and the profi les of different f i lms, when reduced to 
the dimensionless coordinates s and p, depend only on e .  As the film becomes  thinner the value e which 
charac te r izes  its shape dec reases  monotonically.  If ~ (~'0) > 0 at the initial moment  then the shape of the 
film at f i rs t  approximates  the shape of a p lane-para l le l  layer  until the value ~ = 0 is reached (see the c o r -  
responding profile in Fig. 1). Henceforth e becomes negative and the minimum of the film thickness ap- 
proaches  ever c loser  to its periphery,  with the relat ive variation in thickness becoming s t ronger .  These 
conclusions concerning the general  na ture  of the evolution of a film profile are  fully confirmed by exper i -  
ments in [9, 12]. There  is a c lea r  dependence of the film profile on the ratio between its radius a .  and 
the value a which determines  the excess  capi l lary p re s su re .  If a .  ~ a, which occurs  locally, for  example, 
for fi lms between a drop and a solid wall, then ~? is small  and the film is cha rac te r i zed  by a maximum thick- 
ness at the center .  If a .  << a, which is often satisfied for fi lms which form a foam, ~? may be on the order  
of unity or  g rea te r  and the minimum thickness is reached in the cent ra l  part  of the film. 

Its minimum thickness  Hm(t) se rves  as an important  charac te r i s t ic  of a f i lm. Obviously, Hm(t) =tI(t) 
when e > 0 and Hm(t) < H(t) when ~ < 0. The dependence of the value 

H~ (t) H (t)~ (p~) 
7,a$ ~a, 

on ~- is also shown in Fig.  5. The intensification of the variat ion in the film thickness as it becomes thinner 
is conveniently charac te r ized  by the ratio ~? m/~?, whose dependence on ~? is i l lustrated in Fig. 6. 

In the region of ~ ~ 0.1 the function f(~) f rom (2.4) is approximated well by the power function (see 
the dashed line in Fig. 4) 

lOl) ~ IOV~-~ s ~ 26~I s. (2.6) 

In the same region one can assume with high accuracy (see the dashed line in Fig. 6) that 

n~/n ~ 3.33~1. (2.7) 

Using (2.6) and (2.7) and considering that ~ (~)<< 77 (~'0), in this region we have 

~l ~ 0,31(z-- v0)-l/a, ~]m ~ 0.32(~ -- %)-V=. (2.8) 

In dimensionless form these equations are  writ ten as 

H~O.~I( n'~ta: I 1/4" Hm~,O,57(n~taa21i]2 (2.9) 
\ ~ / ' , , - 5 7 - - /  

(for simplicity we took t o = 0). 

These equations, which are  valid for  small  ~,  have the same s t ruc ture  as the fundamental equations 
obtained in [7] but differ f rom them in the numer ica l  coefficients.  The lat ter  is evidently connected with 
the use in [7] of a less exact express ion for the curvature  of the film surface than that which f igures  in Eq. 
(1.7). We note that the approximation (2.7) is ra ther  good down to values of ~ ~ 10-3-10 TM, although the ap- 
proximation (2.7) is violated for V < 10 -3, i.e., for  sufficiently smal l  ~? the rat io T? m/V falls off more  slowly 
with t ime than follows f rom (2.7). This ve ry  fact may explain the deviations of the actual value of 7? m/~? 
f rom the l inear function in (2.7) which have been observed experimental ly for thin f i lms [12]. One must  
keep in mind, however, that for  thin f i lms the effect of molecular  forces on the draining p rocess  becomes 
important .  The lat ter  lead ei ther  to an accelerat ion of the thinning (if a t t ract ion of the opposite film sur -  
faces occurs) or  to the format ion of a s ta t ionary profile (if a positive disjoining p ressu re  a r i ses  in the 
film). 

In the region of ~ > 0.1 the thinning of the film occurs  fas te r  than according to the law (2.8) and is 
charac te r i zed  by the curve in Fig.  5. Fo r  ~ ~ 1, when the centra l  part  of the fi lm differs little f rom a plane- 
paral lel  layer,  the following approximation is valid: 

]01) ~ t,75~]~. (2.10) 

The use of (2.10) leads to a law of thinning of the same form as follows f rom (1.6). 

Equations of the type of (2.9), which are  valid for  relat ively thin films, are  in accordance with the 
data in [9, 12] where the dependences H~t -1 /4  and Hm~t -1 /2  were  obtained experimental ly for  the final 
stage of thinning just before the rupture of the film (the duration of this stage was 10-2-10 -3 for  the f i lms 
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studied in [9, 12]). A comparison between the l imiting values of H4t and H 2 t  obtained in [9, 12] and those 
es t imated  on the basis of (2.9) indicates a sa t i s fac tory  descr ipt ion of the final stage of thinning on the bas is  
of the proposed theory .  

According to the exper imental  data in [9, 12], in the initial stage of thinning the values of H4t and tt2mt 
increase  monotonically f rom zero  to the indicated limiting values.  A s imi la r  conclusion also follows f rom 
the theory,  which allows one to construct  the dependence of these  values on t using the curves  in Figs .  5 
and 6. 

In conclusion, we note that the law of thinning H~ t -1/4 is also valid for  thin f i lms fo rmed  during the 
penetrat ion of a solid sphere  or  a drop through the boundary of separat ion of two liquids (see the exper i -  
mental  resu l t s  in [3], for  example).  
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